Diverging Eigenvalues in Domain Truncations of Schrödinger Operators with Complex Potentials
Result description
Diverging eigenvalues in domain truncations of Schrödinger operators with complex potentials are analyzed and their asymptotic formulas are obtained. Our approach also yields asymptotic formulas for diverging eigenvalues in the strong coupling regime for the imaginary part of the potential.
Keywords
complex potentialdiverging eigenvaluesdomain truncationSchrodinger operatorsspectral exctness
The result's identifiers
Result code in IS VaVaI
Alternative codes found
RIV/68407700:21340/22:00364066
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Diverging Eigenvalues in Domain Truncations of Schrödinger Operators with Complex Potentials
Original language description
Diverging eigenvalues in domain truncations of Schrödinger operators with complex potentials are analyzed and their asymptotic formulas are obtained. Our approach also yields asymptotic formulas for diverging eigenvalues in the strong coupling regime for the imaginary part of the potential.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Volume of the periodical
54
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
5064-5101
UT code for WoS article
000889274600025
EID of the result in the Scopus database
2-s2.0-85137232947
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Applied mathematics
Year of implementation
2022