All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasi-hermitian quantum mechanics and a new class of user-friendly matrix hamiltonians

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00581037" target="_blank" >RIV/61389005:_____/23:00581037 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1742-6596/2667/1/012036" target="_blank" >https://doi.org/10.1088/1742-6596/2667/1/012036</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/2667/1/012036" target="_blank" >10.1088/1742-6596/2667/1/012036</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasi-hermitian quantum mechanics and a new class of user-friendly matrix hamiltonians

  • Original language description

    In the conventional Schrödinger's formulation of quantum mechanics the unitary evolution of a state ψ is controlled, in Hilbert spaceL, by a Hamiltonian ɧ which must be self-adjoint. In the recent, 'quasi-Hermitian' reformulation of the theory one replaces ɧ by its isospectral but non-Hermitian avatar H = Ω−1 ????Ω with Ω†Ω = Θ ≠ I. Although acting in another, manifestly unphysical Hilbert space H, the amended Hamiltonian H ≠ H† can be perceived as self-adjoint with respect to the amended inner-product metric Θ. In our paper motivated by a generic technical 'user-unfriendliness' of the non-Hermiticity of H we introduce and describe a specific new family of Hamiltonians H for which the metrics Θ become available in closed form.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference series

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    012036

  • Publisher name

    IOP

  • Place of publication

    Bristol

  • Event location

    Praha

  • Event date

    Jul 24, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article