Self-adjointness for the MIT bag model on an unbounded cone
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00581041" target="_blank" >RIV/61389005:_____/24:00581041 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202200386" target="_blank" >https://doi.org/10.1002/mana.202200386</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202200386" target="_blank" >10.1002/mana.202200386</a>
Alternative languages
Result language
angličtina
Original language name
Self-adjointness for the MIT bag model on an unbounded cone
Original language description
We consider the massless Dirac operator with the MIT bag boundary conditions on an unbounded three-dimensional circular cone. For convex cones, we prove that this operator is self-adjoint defined on four-component H1-functions satisfying the MIT bag boundary conditions. The proof of this result relies on separation of variables and spectral estimates for one-dimensional fiber Dirac-type operators. Furthermore, we provide a numerical evidence for the self-adjointness on the same domain also for non-convex cones. Moreover, we prove a Hardy-type inequality for such a Dirac operator on convex cones, which, in particular, yields stability of self-adjointness under perturbations by a class of unbounded potentials. Further extensions of our results to Dirac operators with quantum dot boundary conditions are also discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
297
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
36
Pages from-to
1006-1041
UT code for WoS article
001119385200001
EID of the result in the Scopus database
2-s2.0-85173902293