All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-adjointness for the MIT bag model on an unbounded cone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00581041" target="_blank" >RIV/61389005:_____/24:00581041 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/mana.202200386" target="_blank" >https://doi.org/10.1002/mana.202200386</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202200386" target="_blank" >10.1002/mana.202200386</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-adjointness for the MIT bag model on an unbounded cone

  • Original language description

    We consider the massless Dirac operator with the MIT bag boundary conditions on an unbounded three-dimensional circular cone. For convex cones, we prove that this operator is self-adjoint defined on four-component H1-functions satisfying the MIT bag boundary conditions. The proof of this result relies on separation of variables and spectral estimates for one-dimensional fiber Dirac-type operators. Furthermore, we provide a numerical evidence for the self-adjointness on the same domain also for non-convex cones. Moreover, we prove a Hardy-type inequality for such a Dirac operator on convex cones, which, in particular, yields stability of self-adjointness under perturbations by a class of unbounded potentials. Further extensions of our results to Dirac operators with quantum dot boundary conditions are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    297

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    36

  • Pages from-to

    1006-1041

  • UT code for WoS article

    001119385200001

  • EID of the result in the Scopus database

    2-s2.0-85173902293