The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F12%3A00374993" target="_blank" >RIV/61389005:_____/12:00374993 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/ASY-2011-1061" target="_blank" >http://dx.doi.org/10.3233/ASY-2011-1061</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ASY-2011-1061" target="_blank" >10.3233/ASY-2011-1061</a>
Alternative languages
Result language
angličtina
Original language name
The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions
Original language description
The Laplacian in an unbounded tubular neighbourhood of a hyperplane with non-Hermitian complex-symmetric Robin-type boundary conditions is investigated in the limit when the width of the neighbourhood diminishes. We show that the Laplacian converges in anorm resolvent sense to a self-adjoint Schrodinger operator in the hyperplane whose potential is expressed solely in terms of the boundary coupling function. As a consequence, we are able to explain some peculiar spectral properties of the non-HermitianLaplacian by known results for Schrodinger operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BM - Solid-state physics and magnetism
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asymptotic Analysis
ISSN
0921-7134
e-ISSN
—
Volume of the periodical
76
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
49-59
UT code for WoS article
000298375300003
EID of the result in the Scopus database
—