Nodal sets of thin curved layers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F15%3A00442889" target="_blank" >RIV/61389005:_____/15:00442889 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/15:00227993
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2014.09.009" target="_blank" >http://dx.doi.org/10.1016/j.jde.2014.09.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2014.09.009" target="_blank" >10.1016/j.jde.2014.09.009</a>
Alternative languages
Result language
angličtina
Original language name
Nodal sets of thin curved layers
Original language description
This paper is concerned with the location of nodal sets of eigenfunctions of the Dirichlet Laplacian in thin tubular neighbourhoods of hypersurfaces of the Euclidean space of arbitrary dimension. In the limit when the radius of the neighbourhood tends to zero, it is known that spectral properties of the Laplacian are approximated well by an effective Schrodinger operator on the hypersurface with a potential expressed solely in terms of principal curvatures. By applying techniques of elliptic partial differential equations, we strengthen the known perturbation results to get a convergence of eigenfunctions in Holder spaces. This enables us in particular to conclude that every nodal set has a non-empty intersection with the boundary of the tubular neighbourhood.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
258
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
281-301
UT code for WoS article
000345488200002
EID of the result in the Scopus database
2-s2.0-84922811335