On the generalization of the courant nodal domain theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F02%3A00070112" target="_blank" >RIV/49777513:23520/02:00070112 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/02:00000070 RIV/49777513:23520/02:00000317 RIV/49777513:23520/02:00000318
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the generalization of the courant nodal domain theorem
Original language description
In this paper we consider the analogue of the Courant nodal domain theorem for the nonlinear eigenvalue problem for the p-Laplacian. In particular we prove that if $u_{lambda_n}$ is an eigenfunction associated with the nth variational eigenvalue, $lambda_n$, then $u_{lambda_n}$ has at most 2n -2 nodal domain. Also, if $u_{lambda_n}$ has n+k nodal domains, then there is another eigenfunction with at most n-k nodal domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
00220396
e-ISSN
—
Volume of the periodical
Vol. 181
Issue of the periodical within the volume
leden
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
58
UT code for WoS article
—
EID of the result in the Scopus database
—