All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On multiplicity of eigenvalues and symmetry of eigenfunctions of the p--Laplacian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43951717" target="_blank" >RIV/49777513:23520/18:43951717 - isvavai.cz</a>

  • Result on the web

    <a href="http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2017.055" target="_blank" >http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2017.055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.12775/TMNA.2017.055" target="_blank" >10.12775/TMNA.2017.055</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On multiplicity of eigenvalues and symmetry of eigenfunctions of the p--Laplacian

  • Original language description

    We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset R^N$. By means of topological arguments, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnosel&apos;skiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topological Methods in Nonlinear Analysis

  • ISSN

    1230-3429

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    18

  • Pages from-to

    565-582

  • UT code for WoS article

    000441425700011

  • EID of the result in the Scopus database