ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928563" target="_blank" >RIV/49777513:23520/16:43928563 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/proc/12902" target="_blank" >http://dx.doi.org/10.1090/proc/12902</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL
Original language description
In this paper, we prove that the second eigenfunctions of the p- Laplacian, p > 1, are not radial on the unit ball in R^N, for any N GREATER-THAN OR EQUAL TO 2. Our proof relies on the variational characterization of the second eigenvalue and a variant of the deformation lemma. We also construct an infinite sequence of eigenpairs {?n,?n} such that ?n is nonradial and has exactly 2n nodal domains. A few related open problems are also stated.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
2503-2512
UT code for WoS article
—
EID of the result in the Scopus database
—