On remarkable properties of primes near factorials and primorials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00551638" target="_blank" >RIV/67985840:_____/22:00551638 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/22:00551638
Result on the web
<a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Krizek/krizek3.html" target="_blank" >https://cs.uwaterloo.ca/journals/JIS/VOL25/Krizek/krizek3.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On remarkable properties of primes near factorials and primorials
Original language description
The distribution of primes is quite irregular. However, it is conjectured that if p is the smallest prime greater than n! + 1, then p – n! is also prime. We give a sufficient condition that guarantees when this conjecture is true. In particular, we prove that if a prime number p satisfies n! + 1 > p > n! + r2, where r is the smallest prime larger than a given natural number n, then p – n! is also a prime. Similarly we treat another conjecture: If p is the largest prime smaller than n! – 1, then n! – p is also prime. Then we establish further sufficient conditions also for the case when n! is replaced by q#, which is the product of all primes not exceeding the prime q.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Integer Sequences
ISSN
1530-7638
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
11
Pages from-to
22.1.4
UT code for WoS article
000780207300002
EID of the result in the Scopus database
2-s2.0-85123451614