Denominators of Bernoulli Polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901XZ0" target="_blank" >RIV/61988987:17310/18:A1901XZ0 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1112/S0025579318000153" target="_blank" >http://dx.doi.org/10.1112/S0025579318000153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/S0025579318000153" target="_blank" >10.1112/S0025579318000153</a>
Alternative languages
Result language
angličtina
Original language name
Denominators of Bernoulli Polynomials
Original language description
For a positive integer n let (SIM)(n) = Pi(p sp(n)>= p) p(,) where p runs over primes and s(p)(n) is the sum of the base p digits of n. For all n we prove that (SIM)(n) is divisible by all "small" primes with at most one exception. We also show that (SIM)(n) is large and has many prime factors exceeding root n, with the largest one exceeding n(20/37). We establish Kellner's conjecture that the number of prime factors exceeding root n grows asymptotically as k root/logn for some constant tc with k = 2. Further, we compare the sizes of (SIM)(n) and (SIM)(n+1), leading to the somewhat surprising conclusion that although (SIM)(n) tends to infinity with n, the inequality (SIM)(n) > (SIM)(n+1) is more frequent than its reverse.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATIKA
ISSN
0025-5793
e-ISSN
2041-7942
Volume of the periodical
65
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
519-541
UT code for WoS article
000432708800012
EID of the result in the Scopus database
—