All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F16%3A00458994" target="_blank" >RIV/61389013:_____/16:00458994 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.2147/IJN.S102730" target="_blank" >http://dx.doi.org/10.2147/IJN.S102730</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2147/IJN.S102730" target="_blank" >10.2147/IJN.S102730</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

  • Original language description

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CD - Macromolecular chemistry

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GC16-01128J" target="_blank" >GC16-01128J: Antioxidative magnetic nanoparticles based on natural antioxidants: Nanoparticle-cell interactions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Nanomedicine

  • ISSN

    1176-9114

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    26 April

  • Country of publishing house

    NZ - NEW ZEALAND

  • Number of pages

    15

  • Pages from-to

    1701-1715

  • UT code for WoS article

    000374744800003

  • EID of the result in the Scopus database

    2-s2.0-84964414204