All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: in vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F17%3A00478902" target="_blank" >RIV/61389013:_____/17:00478902 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/17:10364729

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.biomaterials.2017.09.003" target="_blank" >http://dx.doi.org/10.1016/j.biomaterials.2017.09.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.biomaterials.2017.09.003" target="_blank" >10.1016/j.biomaterials.2017.09.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: in vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues

  • Original language description

    We designed and synthesized a new delivery system for the anticancer drug doxorubicin based on a biocompatible hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) carrier with linear architecture and narrow molar mass distribution. The drug is connected to the polymer backbone via an acid-sensitive hydrazone linker, which allows its triggered release in the tumor. The in vitro studies demonstrate successful cellular uptake of conjugates followed by release of the cytostatic cargo. In vivo experiments in EL4 lymphoma bearing mice revealed prolonged blood circulation, increased tumor accumulation and enhanced antitumor efficacy of the PEtOx conjugate having higher molecular weight (40 kDa) compared to the lower molecular weight (20 kDa) polymer. Finally, the in vitro and in vivo anti-cancer properties of the prepared PEtOx conjugates were critically compared with those of the analogous system based on the well-established PHPMA carrier. Despite the relatively slower intracellular uptake of PEtOx conjugates, resulting also in their lower cytotoxicity, there are no substantial differences in in vivo biodistribution and anti-cancer efficacy of both classes of polymer-Dox conjugates. Considering the synthetic advantages of poly(2-alkyl-2-oxazoline)s, the presented study demonstrates their potential as a versatile alternative to well-known PEO- or PHPMA-based materials for construction of drug delivery systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biomaterials

  • ISSN

    0142-9612

  • e-ISSN

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000412958000001

  • EID of the result in the Scopus database

    2-s2.0-85028931332