Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F18%3A00488544" target="_blank" >RIV/61389013:_____/18:00488544 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.eurpolymj.2018.02.035" target="_blank" >http://dx.doi.org/10.1016/j.eurpolymj.2018.02.035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eurpolymj.2018.02.035" target="_blank" >10.1016/j.eurpolymj.2018.02.035</a>
Alternative languages
Result language
angličtina
Original language name
Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior
Original language description
Methacrylate hydrogels are unique synthetic materials known for their capability to serve as multifunctional eye-implants, practically without duration and compatibility limits. We introduce a novel strategy consisting in toughening of a macroporous microstructure using the interpenetrating network concept, which improves the commonly preferred preparation way of hydrogel based on photopolymerization. The method proceeds at ambient temperature and can be used in situ. Scattering of irradiation generated by the microstructure considerably enhances the polymerization rate. This acceleration effect was quantified by careful optical analysis and is important for in situ applications. Crosslinked IPN hydrogels of 2-hydroxyethyl methacrylate (HEMA) as the first network and glycerol methacrylate (GMA) as the second network based on this new design were studied and compared with IPNs prepared from non-porous PHEMA gels. Surprisingly, a relatively high swelling capacity was achieved with this new design and the Young’s modulus increased from 4 kPa for parent PHEMA network to 380 kPa for the PHEMA–PGMA IPNs and to 980 kPa for the PHEMA–PHEMA IPNs. The IPN hydrogels were strong and resisted mechanical load. The reinforcement of the mechanically poor macroporous network by swelling in another hydrophilic monomer and subsequent polymerization presents a new concept of preparation of strong microstructured IPNs (MIPNs).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/GA17-08531S" target="_blank" >GA17-08531S: Computational design of hydrogel cell scaffolds.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Polymer Journal
ISSN
0014-3057
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
April
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
304-313
UT code for WoS article
000430628800035
EID of the result in the Scopus database
2-s2.0-85043472499