All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins - the introduction of protein-corona-free polymer nanomedicine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F18%3A00488750" target="_blank" >RIV/61389013:_____/18:00488750 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/18:10376672

  • Result on the web

    <a href="http://dx.doi.org/10.1039/C7NR09355A" target="_blank" >http://dx.doi.org/10.1039/C7NR09355A</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/C7NR09355A" target="_blank" >10.1039/C7NR09355A</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins - the introduction of protein-corona-free polymer nanomedicine

  • Original language description

    In this paper, we revised the current understanding of the protein corona that is created on the surface of nanoparticles in blood plasma after an intravenous injection. We have focused on nanoparticles that have a proven therapeutic outcome. These nanoparticles are based on two types of biocompatible amphiphilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA): a block copolymer, poly(ε-caprolactone) (PCL)-b-poly(HPMA), and a statistical HPMA copolymer bearing cholesterol moieties, which have been tested both in vitro and in vivo. We studied the interaction of nanoparticles with blood plasma and selected blood plasma proteins by electron paramagnetic resonance (EPR), isothermal titration calorimetry, dynamic light scattering, and cryo-transmission electron microscopy. The copolymers were labeled with TEMPO radicals at the end of hydrophobic PCL or along the hydrophilic HPMA chains to monitor changes in polymer chain dynamics caused by protein adsorption. By EPR and other methods, we were able to probe specific interactions between nanoparticles and blood proteins, specifically low- and high-density lipoproteins, immunoglobulin G, human serum albumin (HSA), and human plasma. It was found that individual proteins and plasma have very low binding affinity to nanoparticles. We observed no hard corona around HPMA-based nanoparticles, with the exception of HSA the proteins showed no detectable binding to the nanoparticles. Our study confirms that a classical “hard corona–soft corona” paradigm is not valid for all types of nanoparticles and each system has a unique protein corona that is determined by the nature of the NP material.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    6194-6204

  • UT code for WoS article

    000428788200047

  • EID of the result in the Scopus database

    2-s2.0-85044747093