All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermoplastic starch composites filled with isometric and elongated TiO2-based nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F19%3A00511137" target="_blank" >RIV/61389013:_____/19:00511137 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.frontiersin.org/articles/10.3389/fmats.2019.00284/pdf" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmats.2019.00284/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fmats.2019.00284" target="_blank" >10.3389/fmats.2019.00284</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermoplastic starch composites filled with isometric and elongated TiO2-based nanoparticles

  • Original language description

    Biodegradable thermoplastic starch (TPS) composites with isometric titanium dioxide nanoparticles (TiO2, diameter ~100 nm) and elongated titanate nanotubes (TiNT, diameter ~20 nm and aspect ratio >50) were prepared from wheat and tapioca starch. The preparation was based on our recently developed two-step procedure consisting of the solution casting (SC) followed by the melt mixing (MM), which had been shown to yield highly homogeneous TPS in our previous study. In this work we demonstrated that the type of the TPS matrix and the type of the filler had significant impact on the morphology and the properties of the final composites. Multiple microscopic techniques (LM, SEM, and TEM) evidenced that the TPS/TiO2 composites exhibited a very homogeneous dispersion of the filler, while the TPS/TiNT composites contained micrometer-size agglomerates of TiNT. Moreover, all composites with the wheat starch matrix [TPS(w)] showed a higher filler agglomeration than the corresponding composites with the tapioca starch matrix [TPS(t)]. Rheological experiments showed that the TiO2 and TiNT fillers had quite small impact on the viscosity of the TPS(w) matrix, probably due to slightly higher agglomeration, poorer dispersion, and weaker matrix-particle interactions. On the other hand, the TPS(t) matrix was influenced by both fillers significantly: the TiO2 nanoparticles with almost ideal dispersion formed a physical network in the TPS(t) matrix, which significantly increased the viscosity of the composite, whereas the TiNT nanotubes seemed to destruct the TPS(t) matrix partially, resulting in decreased viscosity of the composite. DMTA results confirmed the rheological measurements: Storage moduli (G') showed that TPS(t) and its composites with TiO2 were stiffer than the corresponding TPS(w) samples, while the TPS(t)/TiNT composites were less stiff than TPS(w)/TiNT. Also loss moduli (G“) confirmed the difference between tapioca starch and wheat starch composites, which differed by their glass transition temperatures [Tg of TPS(w) < Tg of TPS(t)]. The rheological and DMTA results were supplemented and supported by IR, XRD, and TGA measurements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Materials

  • ISSN

    2296-8016

  • e-ISSN

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000498948100001

  • EID of the result in the Scopus database

    2-s2.0-85075677013