All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Microporous hyper-cross-linked polyacetylene networks: covalent structure and texture modification by reversible Schiff-base chemistry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F20%3A00532071" target="_blank" >RIV/61389013:_____/20:00532071 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/20:10419845

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0014305720316281?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0014305720316281?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eurpolymj.2020.109914" target="_blank" >10.1016/j.eurpolymj.2020.109914</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Microporous hyper-cross-linked polyacetylene networks: covalent structure and texture modification by reversible Schiff-base chemistry

  • Original language description

    We present controlled de-cross-linking and detemplating for modifying the porosity and covalent structure of porous organic polymers. HC≡C-C6H4-CH=N-C6H4-N=CH-C6H4-C≡CH and HC≡C-C6H4-N=CH-C6H4-CH=N-C6H4-C≡CH type monomers (-C6H4- is meta- and para-phenylene) having two polymerizable ethynyl groups and two hydrolysable azomethine groups per molecule were copolymerized with 4,4-diethynylbiphenyl and tetrakis(4-ethynylphenyl)methane into porous polyacetylene-type hyper-cross-linked networks. Two types of cross-links were involved in cross-linking: hydrolysable Schiff-base-type cross-links and stable non-hydrolysable cross-links. Postpolymerization hydrolysis caused cleavage of the azomethine groups and release of phenylenediamine or diformylbenzene template segments from the Schiff-base-type cross-links. Although hydrolysis resulted in partial de-cross-linking, stable cross-links remaining in the networks prevented the collapse of the porous texture. Partial de-cross-linking led to an increase in the micropore diameter and, moreover, –HC=O or –NH2 groups were introduced into the networks in this way. Modified networks decorated with above groups acted as chemisorbents for trapping aldehydes or primary amines under formation of azomethine links between the network and adsorptive.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA20-01233S" target="_blank" >GA20-01233S: Rational design of advanced soft functional materials guided by advanced solid-state NMR spectroscopy and high-performance electron microscopy</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Polymer Journal

  • ISSN

    0014-3057

  • e-ISSN

  • Volume of the periodical

    136

  • Issue of the periodical within the volume

    5 August

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000562571200013

  • EID of the result in the Scopus database

    2-s2.0-85088994756