All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F22%3A00550078" target="_blank" >RIV/61389013:_____/22:00550078 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10448196

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1387181121007629?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1387181121007629?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micromeso.2021.111636" target="_blank" >10.1016/j.micromeso.2021.111636</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules

  • Original language description

    A new method for the formation of permanent micropores in hyper-cross-linked networks is reported. This method is based on a template approach, using small molecules (4-methylaniline and 4-methylbenzaldehyde) as templates. These molecules are covalently attached via azomethine links to parent non-porous hyper-cross-linked polyacetylene networks prepared by chain-growth homo and copolymerization of ethynylated monomers. Highly efficient and well-defined postpolymerization hydrolysis of the networks leads to (i) cleavage of azomethine links and (ii) removal of the template molecules from the networks. Although up to 40 wt % of the mass of the networks are removed via hydrolysis, the hyper-cross-linked scaffold of the networks is not collapsed and micropores are formed in the networks. In this way, the parent non-porous networks are transformed into networks with permanent micropores (diameter ∼1 nm) and a specific surface area up to 623 m2/g−1. Simultaneously with the formation of micropores, functional groups (NH2, CHO) are introduced into the networks. The prepared microporous networks adsorb the model adsorptives (up to 1.73 mmol CO2/g and up to 6.53 mmol I2/g.). The detemplating and micropores formation is confirmed by solid state NMR spectra and N2 adsorption/desorption isotherms. The reported method of micropores formation could find a wider application for the preparation of microporous polymers with a well-defined texture and surface functionalization. Not only azomethine links but also many other groups with cleavable bonds could potentially be used for templating with covalently attached small molecules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Microporous and Mesoporous Materials

  • ISSN

    1387-1811

  • e-ISSN

    1873-3093

  • Volume of the periodical

    330

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    111636

  • UT code for WoS article

    000761815600002

  • EID of the result in the Scopus database

    2-s2.0-85121246699