All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F20%3A00533405" target="_blank" >RIV/61389013:_____/20:00533405 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/20:00533405

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsami.0c12293" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.0c12293</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.0c12293" target="_blank" >10.1021/acsami.0c12293</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution

  • Original language description

    Metal–organic frameworks (MOFs), owing to their unique architecture, attract consistent attention in the design of high-performance Li battery materials. Here, we report a new category of ion-conducting crystalline materials for all-solid-state electrolytes based on an MIL53(Al) framework featuring a superchaotropic metallacarborane (Li+CoD–) salt and present the first quantitative data on Li+ ion sites, local dynamics, chemical exchange, and the formation of charge-transfer pathways. We used multinuclear solid-state nuclear magnetic resonance (ss-NMR) spectroscopy to examine the mechanism of ionic conductivity at atomic resolution and to elucidate order–disorder processes, framework–ion interactions, and framework breathing during the loading of Li+CoD– species and transfer of Li+ ions. In this way, the MIL53(Al)@LiCoD framework was found to adopt an open-pore conformation accompanied by a minor fraction of narrow-pore channels. The inserted Li+ ions have two states (free and bound), which both exhibit extensive motions. Both types of Li+ ions form mutually communicating chains, which are large enough to enable efficient long-range charge transfer and macroscopic conductivity. The superchaotropic anions undergo high-amplitude uniaxial rotation motions supporting the transfer of Li+ cations along them, while the fluctuations of MOF aromatic linkers support the penetration of Li+ through the channel walls. Our findings provide a detailed atomic-resolution insight into the mechanism of ionic conductivity and thus have significant implications for the design of the next generation of energy-related materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    42

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    47447-47456

  • UT code for WoS article

    000584489800029

  • EID of the result in the Scopus database

    2-s2.0-85094219898