Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F21%3A00542466" target="_blank" >RIV/61389013:_____/21:00542466 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/PY/D1PY00141H#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/PY/D1PY00141H#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D1PY00141H" target="_blank" >10.1039/D1PY00141H</a>
Alternative languages
Result language
angličtina
Original language name
Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications
Original language description
A two-step synthetic approach via the combination of living cationic ring-opening (CROP) and reversible addition–fragmentation chain transfer (RAFT) polymerization techniques was used to produce novel amphiphilic block copolymers based on the water-soluble poly(2-methyl-2-oxazoline) (PMeOx), which holds protein repelling properties, linked to the hydrophilic–hydrophobic pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA). Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was further employed to manufacture block copolymer self-assemblies. Interestingly, although all the synthesized macromolecules contained higher amounts of the pH-responsive segment, the microfluidic approach allowed the manufacturing of core–shell micelles and polymersomes. The morphology seems to be driven by the overall molecular weight of the block copolymers rather than by the hydrophilic-to-hydrophobic weight ratio. Longer and shorter amphiphilic chains enabled the manufacturing of core–shell assemblies and polymeric vesicles, respectively. The use of PMeOx and PDPA blocks confers serum stability and pH-responsive behavior to the nanoparticles in a pH window which is particularly useful for tumour detection and therapy. The self-assembled nanostructures are non-toxic even at fairly high polymer concentrations. All these features therefore can be useful in the design of pH-triggered nanoplatforms of distinct morphologies towards a variety of biomedical applications, for instance, the loading and delivery of hydrophobic and hydrophilic therapeutics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymer Chemistry
ISSN
1759-9954
e-ISSN
1759-9962
Volume of the periodical
12
Issue of the periodical within the volume
19
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
2868-2880
UT code for WoS article
000642583400001
EID of the result in the Scopus database
2-s2.0-85106186227