Influence of hydrophobic side-chain length in amphiphilic gradient copoly(2-oxazoline)s on the therapeutics loading, stability, cellular uptake and pharmacokinetics of nano-formulation with curcumin
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F22%3A00564413" target="_blank" >RIV/61389013:_____/22:00564413 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1999-4923/14/12/2576" target="_blank" >https://www.mdpi.com/1999-4923/14/12/2576</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pharmaceutics14122576" target="_blank" >10.3390/pharmaceutics14122576</a>
Alternative languages
Result language
angličtina
Original language name
Influence of hydrophobic side-chain length in amphiphilic gradient copoly(2-oxazoline)s on the therapeutics loading, stability, cellular uptake and pharmacokinetics of nano-formulation with curcumin
Original language description
Due to the simple one-step preparation method and a promising application in biomedical research, amphiphilic gradient copoly(2-oxazoline)s are gaining more and more interest compared to their analogous block copolymers. In this work, the curcumin solubilization ability was tested for a series of amphiphilic gradient copoly(2-oxazoline)s with different lengths of hydrophobic side-chains, consisting of 2-ethyl-2-oxazoline as a hydrophilic monomer and 2-(4-alkyloxyphenyl)-2-oxazoline as a hydrophobic monomer. It is shown that the length of the hydrophobic side-chain in the copolymers plays a crucial role in the loading of curcumin onto the self-assembled nanoparticles. The kinetic stability of self-assembled nanoparticles studied using FRET shows a link between their integrity and cellular uptake in human glioblastoma cells. The present study demonstrates how minor changes in the molecular structure of gradient copoly(2-oxazoline)s can lead to significant differences in the loading, stability, cytotoxicity, cellular uptake, and pharmacokinetics of nano-formulations containing curcumin. The obtained results on the behavior of the complex of gradient copoly(2-oxazoline)s and curcumin may contribute to the development of effective next-generation polymeric nanostructures for biomedical applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pharmaceutics
ISSN
1999-4923
e-ISSN
1999-4923
Volume of the periodical
14
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
2576
UT code for WoS article
000936290000001
EID of the result in the Scopus database
2-s2.0-85144857732