All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fluorescent poly[N-(2-hydroxypropyl) methacrylamide] nanogel by dispersion polymerization as a contrast agent for live-cell imaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00574199" target="_blank" >RIV/61389013:_____/23:00574199 - isvavai.cz</a>

  • Alternative codes found

    RIV/44555601:13440/23:43897726

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/app.54331" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/app.54331</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/app.54331" target="_blank" >10.1002/app.54331</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fluorescent poly[N-(2-hydroxypropyl) methacrylamide] nanogel by dispersion polymerization as a contrast agent for live-cell imaging

  • Original language description

    Here, we report a novel dispersion polymerization for the preparation of cross-linked poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA)-based nanogels in water/2-methoxyethanol mixture (H2O/MetCel), initiated with potassium persulfate (KPS), and stabilized with poly(vinyl alcohol) 25/140 (PVA) and sodium dodecyl sulfate (SDS). Obtained nanogels were characterized using transmission (TEM) and cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), asymmetric flow field-flow fractionation (A4F), nuclear magnetic resonance spectroscopy (NMR), and Raman spectroscopy methods in terms of size, particle size distribution, morphology, and structure. N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized with 20 wt% ethylene dimethacrylate (EDMA) resulting in 138 nm poly[N-(2-hydroxypropyl) methacrylamide-co-ethylene dimethacrylate] (PHPMA-EDMA) nanogel dispersion with irregular shape and core-shell type structure. Next, we copolymerized HPMA with 20 wt% EDMA and 10 wt% propargyl methacrylate (PMA) to incorporate reactive functionality into the final core-shell type 120 nm poly[N-(2-hydroxypropyl) methacrylamide-co-ethylene dimethacrylate-co-propargyl methacrylate] (PHPMA-EDMA-PMA) nanogel dispersion. Then, the biocompatibility of PHPMA-EDMA-PMA nanogel was proved using rat mesenchymal stem cells (rMSC), and human foreskin fibroblasts (BJ). PHPMA-EDMA-PMA nanogel was fluorescently labeled with sulfo-cyanine3 azide resulting in 131 nm nanogel. We performed in vitro uptake studies with fluorescently labeled PHPMA-EDMA-PMA nanogel using rMSC showing that the fluorescently labeled PHPMA-EDMA-PMA nanogel was well-distributed in the cytosol and taken up into lysosomes.n

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Applied Polymer Science

  • ISSN

    0021-8995

  • e-ISSN

    1097-4628

  • Volume of the periodical

    140

  • Issue of the periodical within the volume

    34

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    e54331

  • UT code for WoS article

    001024203900001

  • EID of the result in the Scopus database

    2-s2.0-85164310907