All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00586366" target="_blank" >RIV/61389013:_____/24:00586366 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0021979724011196?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021979724011196?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcis.2024.05.133" target="_blank" >10.1016/j.jcis.2024.05.133</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories

  • Original language description

    Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Colloid and Interface Science

  • ISSN

    0021-9797

  • e-ISSN

    1095-7103

  • Volume of the periodical

    671

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    88-99

  • UT code for WoS article

    001244838600001

  • EID of the result in the Scopus database

    2-s2.0-85193900209