All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

N2(A) vibrational kinetics in streamer discharges: effect of oxygen on formation of low vibrational levels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F16%3A00468847" target="_blank" >RIV/61389021:_____/16:00468847 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    N2(A) vibrational kinetics in streamer discharges: effect of oxygen on formation of low vibrational levels

  • Original language description

    In the present study we report on the N2(A) vibrational kinetics in nitrogen-oxygen mixtures revealed by LIF technique under DBD streamer discharge conditions at low pressures. In pure nitrogen, the observed evolution of the N2(A) LIF signal during the decaying streamer channel period evidences fast initial relaxation of high vibrational levels towards the v = 2 and 3 levels, followed by a delayed increase of terminal v = 0 and 1 levels. In nitrogen-oxygen mixtures however, the efficient quenching of higher N2(A) levels by oxygen significantly inhibits vibrational relaxation towards the lower and terminal levels, causing much lower populations of the v = 0-3 levels. This is already clearly visible in the N2 + 0.8% O2 mixture with all the kinetics limited to the first 10 microseconds. In synthetic air, the kinetics is limited to few microseconds in the post discharge. Furthermore, much more effective quenching of fluorescence makes the measurements extremely challenging. Obtained results show that with the addition of oxygen the evolution of the N2(A) vibrational distribution is effectively terminated during the collisional-radiative cascade inhibiting energy pooling mechanism which is effective in pure nitrogen

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    BL - Plasma physics and discharge through gases

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-04023S" target="_blank" >GA15-04023S: Advanced Research of Kinetic Processes in Streamer Discharges</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů