All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On tungsten spraying using inductively coupled plasma system - First results

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00498210" target="_blank" >RIV/61389021:_____/17:00498210 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On tungsten spraying using inductively coupled plasma system - First results

  • Original language description

    Thanks to its unique properties such as high melting point and density, tungsten and tungsten-based alloys are commonly used in a wide range of applications. Among others, these materials are promising candidates for the plasma facing components in the future fusion reactors. One of considered ways of production of these parts is plasma spraying. There are however several limitations for conventional gas stabilized torches, mainly in plasma enthalpy (i.e. the ability to efficiently melt tungsten particles in considerable feed rates) and susceptibility of tungsten to oxidation (which complicates spraying in oxidizing open-air atmosphere). The radio frequency inductively coupled plasma torch (RF-ICP) is a unique system which can potentially overcome both these problems and can be used for efficient tungsten spraying. The tungsten powder, which can be finer than the one used for the conventional systems, is fed axially into the hot plasma core, both factors lead to a more efficient melting of the particles. The deposition is performed in a chamber with controlled atmosphere of inert gas or decreased pressure, the oxidation is therefore suppressed. In this first study carried out with the newly commissioned RF-ICP system TekSpray 15 (Tekna), samples of tungsten coatings on graphite substrates were prepared. The X-ray diffraction and SEM images of the free surfaces and cross-sections were obtained, documenting high purity of the deposits and appropriate flattening of the splats leading to a dense coating microstructure. The effect of substrate preheating on the microstructure, porosity and hardness was also studied.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2017: 26th International Conference on Metallurgy and Materials: abstracts

  • ISBN

    978-80-87294-73-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1321-1326

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 24, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000434346900212