All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

X-ray induced damage of B4C-coated bilayer materials under various irradiation conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00509786" target="_blank" >RIV/61389021:_____/19:00509786 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/19:00521099

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-019-38556-0" target="_blank" >https://www.nature.com/articles/s41598-019-38556-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-019-38556-0" target="_blank" >10.1038/s41598-019-38556-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    X-ray induced damage of B4C-coated bilayer materials under various irradiation conditions

  • Original language description

    In this report, we analyse X-ray induced damage of B4C-coated bilayer materials under various irradiation geometries, following the conditions of our experiment performed at the free-electron-laser facility SACLA. We start with the discussion of structural damage in solids and damage threshold doses for the experimental system components: B4C, SiC, Mo and Si. Later, we analyze the irradiation of the experimentally tested coated bilayer systems under two different incidence conditions of a linearly polarized X-ray pulse: (i) grazing incidence, and (ii) normal incidence, in order to compare quantitatively the effect of the pulse incidence on the radiation tolerance of both systems. For that purpose, we propose a simple theoretical model utilizing properties of hard X-ray propagation and absorption in irradiated materials and of the following electron transport. With this model, we overcome the bottleneck problem of large spatial scales, inaccessible for any existing first-principle-based simulation tools due to their computational limitations for large systems. Predictions for damage thresholds obtained with the model agree well with the available experimental data. In particular, they confirm that two coatings tested: 15 nm B4C/20 nm Mo on silicon wafer and 15 nm B4C/50 nm SiC on silicon wafer can sustain X-ray irradiation at the fluences up to similar to 10 mu J/mu m(2), when exposed to linearly polarized 10 keV X-ray pulse at a grazing incidence angle of 3 mrad. Below we present the corresponding theoretical analysis. Potential applications of our approach for design and radiation tolerance tests of multilayer components within X-ray free-electron-laser optics are indicated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    2029

  • UT code for WoS article

    000458619600029

  • EID of the result in the Scopus database