All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diagnostics for plasma control – From ITER to DEMO

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00517627" target="_blank" >RIV/61389021:_____/19:00517627 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0920379618308585?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920379618308585?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2018.12.092" target="_blank" >10.1016/j.fusengdes.2018.12.092</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diagnostics for plasma control – From ITER to DEMO

  • Original language description

    The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed. Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    465-472

  • UT code for WoS article

    000488307400104

  • EID of the result in the Scopus database

    2-s2.0-85059686164