All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Development of a concept and basis for the DEMO diagnostic and control system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00557628" target="_blank" >RIV/61389021:_____/22:00557628 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0920379622001223?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920379622001223?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2022.113122" target="_blank" >10.1016/j.fusengdes.2022.113122</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Development of a concept and basis for the DEMO diagnostic and control system

  • Original language description

    An initial concept for the plasma diagnostic and control (D&C) system has been developed as part of European studies towards the development of a demonstration tokamak fusion reactor (DEMO). The main objective is to develop a feasible, integrated concept design of the DEMO D&C system that can provide reliable plasma control and high performance (electricity output) over extended periods of operation. While the fusion power is maximized when operating near to the operational limits of the tokamak, the reliability of operation typically improves when choosing parameters significantly distant from these limits. In addition to these conflicting requirements, the D&C development has to cope with strong adverse effects acting on all in vessel components on DEMO (harsh neutron environment, particle fluxes, temperatures, electromagnetic forces, etc.). Moreover, space allocation and plasma access are constrained by the needs for first wall integrity and optimization of tritium breeding. Taking into account these boundary conditions, the main DEMO plasma control issues have been formulated, and a list of diagnostic systems and channels needed for plasma control has been developed, which were selected for their robustness and the required coverage of control issues. For a validation and refinement of this concept, simulation tools are being refined and applied for equilibrium, kinetic and mode control studies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

    1873-7196

  • Volume of the periodical

    179

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    113122

  • UT code for WoS article

    000793698700005

  • EID of the result in the Scopus database

    2-s2.0-85127747568