All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanostructuring of PMMA, GaAs, SiC and Si samples by focused XUV laser beam

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00538597" target="_blank" >RIV/61389021:_____/19:00538597 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11035/110350K/Nanostructuring-of-PMMA-GaAs-SiC-and-Si-samples-by-focused/10.1117/12.2521444.short?SSO=1" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11035/110350K/Nanostructuring-of-PMMA-GaAs-SiC-and-Si-samples-by-focused/10.1117/12.2521444.short?SSO=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2521444" target="_blank" >10.1117/12.2521444</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanostructuring of PMMA, GaAs, SiC and Si samples by focused XUV laser beam

  • Original language description

    We report results of ablation experiments of different materials through Ni grid with an intense XUV laser beam. As a source of XUV radiation (energy of about 100 ïJ) with wavelength of 46.9 nm was used high-current capillary discharge driver. Ablated footprints were analyzed by optical microscope and by an atomic-force microscope (AFM). It was found that structure and period of diffraction pattern on PMMA sample (both in ablation and desorption area) depend on the distance from grid to the sample surface. Depth of ablation craters in a single window of PMMA for single shot was about of 80 nm, and period changes from 400 nm (on the edge) to 190 nm (in the middle) for grid further from surface, and from 400 nm (on the edge) to 10 nm (in the middle) for closer grid. Contrary to this, no diffraction patterns in ablation region and only slightly visible on the edge in the desorption region were observed on the surface of GaAs, SiC and Si samples for single shot. Depth of ablated craters in ablation region was about 100 nm for GaAs, 20 nm for Si and up to 5 nm for SiC. In desorption region depth of ablated craters is relatively shallow (up to 5 nm for GaAs and up to 2 nm for Si and SiC). In the case of irradiation samples by 5 shots ablated craters are deeper, but situation with diffraction pattern is the same as in the case of single shot for all materials.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/LTT17015" target="_blank" >LTT17015: Reserch in frame International Center for Dense Magnetized Plasmas</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Optics Damage and Materials Processing by EUV/X-ray Radiation VII

  • ISBN

    978-151062736-9

  • ISSN

    0277-786X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    "Roč. 11035 (2019)"

  • Publisher name

    SPIE

  • Place of publication

    Bellingham

  • Event location

    Praha

  • Event date

    Apr 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000489750600006