All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the inactivation of Bacillus subtilis spores by surface streamer discharge in humid air caused by reactive species

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00531308" target="_blank" >RIV/61389021:_____/20:00531308 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6463/ab7cf7" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/ab7cf7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/ab7cf7" target="_blank" >10.1088/1361-6463/ab7cf7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the inactivation of Bacillus subtilis spores by surface streamer discharge in humid air caused by reactive species

  • Original language description

    The inactivation of Bacillus subtilis (ATCC 6633) spores deposited on a filter membrane was studied by using low-temperature plasma produced via surface dielectric barrier discharge. Spore samples were carefully prepared to avoid the formation of cell aggregates, and their inactivation was induced by multiple surface streamer discharge driven in a coplanar dielectric barrier discharge electrode geometry by an amplitude-modulated AC high voltage waveforms in humid air at atmospheric pressure. At a discharge duty cycle of 0.4, the surface dielectric barrier discharge is characterised by an average total power of 1.7 W (power density 1.5 W cm-2 and energy density ∼0.3 Wh l-1) and a low gas temperature of the plasma filaments of about 320 K. The spores were exposed by placing a sample holder at a fixed distance of 3 mm from the electrode surface covered by plasma filaments. Particular attention was paid to identifying sporicidal agents employed in the process of inactivation. Since treated samples did not come into direct contact with the streamer filaments and excessive heating was excluded thanks to the low energy density, our results indicate that the spores were inactivated mainly by reactive oxygen and nitrogen species such as O3, H2O2 and NO2-. Discharge-induced damage of the spore structure was evidenced via the detection of dipicolinic acid and leaking of intracellular components. We therefore conclude that B. subtilis spores were inactivated chemically, probably due to failure of the coat structure or membrane of the spore.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics D-Applied Physics

  • ISSN

    0022-3727

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    245203

  • UT code for WoS article

    000528541600001

  • EID of the result in the Scopus database

    2-s2.0-85084734532