All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Phase transformations in commercial cold-rolled Al–Zn–Mg–Cu alloys with Sc and Zr addition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F21%3A00548488" target="_blank" >RIV/61389021:_____/21:00548488 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10420417

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs10973-020-09862-x" target="_blank" >https://link.springer.com/article/10.1007%2Fs10973-020-09862-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10973-020-09862-x" target="_blank" >10.1007/s10973-020-09862-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Phase transformations in commercial cold-rolled Al–Zn–Mg–Cu alloys with Sc and Zr addition

  • Original language description

    The influence of cold rolling on thermal and mechanical properties together with microstructure observation of cast AlZnMgCu(ScZr) alloys has been investigated. Differential scanning calorimetry measurements and microhardness were compared to microstructure that was observed by microscopy (scanning electron and transmission), electron backscatter and X-ray diffractions. Microstructure observation of all studied alloys proved eutectic phase at (sub)grain boundaries. The eutectic phase at grain boundary in the AlZnMgCuScZr has a disordered quasicrystalline structure (known as the T phase or Mg32(Al,Cu,Zn)49). In the AlZnMgCu alloy, the eutectic phase consists of two phases—predominant MgZn2 phase and minor quasicrystalline T phase. During casting and subsequent cooling, multilayer primary Al3(Sc,Zr) particles also precipitated in the alloy with Sc,Zr addition. Solute clusters and/or Guinier–Preston zones were dissolved during the annealing up to ~ 170 °C in the alloys. The highest hardening is caused by particle formation of metastable η′ and stable η phase in AlZnMgCu system observed at ~ 200 °C. Precipitation of the secondary Al3(Sc,Zr) particles is probably the reason of hardening after annealing above 300 °C in the Sc,Zr-containing alloys. Melting of eutectic phases was observed in DSC curves at temperatures ~ 481 and ~ 493 °C in the studied alloys. Activation energies of the Guinier–Preston zones dissolution and/or solute clusters were calculated using Kissinger and Starink method as QA ≈ 100 kJ mol−1 and the formation of the particles of Al–Zn–Mg–Cu system as QB ≈ 150 kJ mol−1. No significant effect on the calculation of activation energy values of thermal processes was observed in deformed alloys. Sc,Zr addition in the alloys stabilizes grains, and there is no recrystallization in the AlZnMgCuScZr alloy at temperature 450 °C/10 h.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Thermal Analysis and Calorimetry

  • ISSN

    1388-6150

  • e-ISSN

    1588-2926

  • Volume of the periodical

    145

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    12

  • Pages from-to

    2991-3002

  • UT code for WoS article

    000537978100006

  • EID of the result in the Scopus database

    2-s2.0-85086043843