All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical modelling for beam duct heat loads calculations and application to the new 1 MW neutral beam injector in the COMPASS tokamak

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00565919" target="_blank" >RIV/61389021:_____/22:00565919 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6587/ac985e" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6587/ac985e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6587/ac985e" target="_blank" >10.1088/1361-6587/ac985e</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical modelling for beam duct heat loads calculations and application to the new 1 MW neutral beam injector in the COMPASS tokamak

  • Original language description

    We introduce detailed numerical modelling of the fast neutral particles inside the duct of a new neutral beam injector (NBI) recently installed at the COMPASS tokamak (major radius R 0 = 0.56 m , vessel midplane minor radius a = 0.23 m , toroidal field B t = 0.9-2.1 T ). This new NBI system is able to deliver 1 M W power to the plasma at nominal injection energy of 80 k e V . Collisions with the background neutrals inside the beam duct give birth to fast ions according to the density of the gas and tabulated cross-sections. The ion trajectories are then computed in the complete 3D magnetic field, showing the importance of the stray magnetic field and the magnitude of the field within the gap in between toroidal coils.During the experimental campaign dedicated to the new 1 MW NBI, the beam duct heating was measured by a row of thermocouples located on the top-half of the beam duct. The fast ions collisions with the duct wall cause a local temperature increase with a characteristic pattern. In COMPASS, the location of the fast ions power deposition measured experimentally is in qualitative agreement with modelling of ion losses when following them after the re-ionization process. We trace back the details of the orbits corresponding to deposition at the hot-spot inside the beam duct. Quantitative comparison between the experiment and the simulation shows that a larger than expected amount of neutral gas was inside the duct and this study will guide the design of the future NBI duct in COMPASS Upgrade.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Physics and Controlled Fusion

  • ISSN

    0741-3335

  • e-ISSN

    1361-6587

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    125001

  • UT code for WoS article

    000868886200001

  • EID of the result in the Scopus database

    2-s2.0-85141031959