Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F20%3A00533733" target="_blank" >RIV/61389030:_____/20:00533733 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/20:73604711
Result on the web
<a href="http://doi.org/10.1111/tpj.14909" target="_blank" >http://doi.org/10.1111/tpj.14909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/tpj.14909" target="_blank" >10.1111/tpj.14909</a>
Alternative languages
Result language
angličtina
Original language name
Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco
Original language description
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene β-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plant Journal
ISSN
0960-7412
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
1967-1984
UT code for WoS article
000554352500001
EID of the result in the Scopus database
2-s2.0-85088781310