All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F23%3A00578747" target="_blank" >RIV/61389030:_____/23:00578747 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1038/s41467-023-42747-9" target="_blank" >https://doi.org/10.1038/s41467-023-42747-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-023-42747-9" target="_blank" >10.1038/s41467-023-42747-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9

  • Original language description

    Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10603 - Genetics and heredity (medical genetics to be 3)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

    2041-1723

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    7354

  • UT code for WoS article

    001104729800008

  • EID of the result in the Scopus database

    2-s2.0-85176428260