All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary techniques for neural network optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F05%3AA0900ERV" target="_blank" >RIV/61988987:17310/05:A0900ERV - isvavai.cz</a>

  • Alternative codes found

    RIV/61988987:17310/05:A1000ERV

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary techniques for neural network optimization

  • Original language description

    The idea of evolving artificial networks by evolutionary algorithms is based on a powerful metaphor: the evolution of the human brain. The application of evolutionary algorithms to neural network optimization is an active field of study. The success andspeed of training of neural network is based on the initial parameter settings, such as architecture, initial weights, learning rates, and others. A lot of research is being done on how to find the optimal network architecture and parameter settings given the problem it has to learn. One possible solution is use of evolutionary algorithms to neural network optimization systems. We can distinguish two separate issues for it: on the one hand weight training, and on the other hand architecture optimization. Next, we will focus on the architecture optimization and especially on the comparison of different strategies of neural network architecture encoding for the purchase of the evolutionary algorithm.

  • Czech name

    Optimalizace neuronových sítí evolučními technikami

  • Czech description

    Optimalizace neuronových sítí evolučními technikami

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 1st International Workshop on Artifitial Neural Networks and Intelligent Information Processing, ANNIIP 2005.

  • ISBN

    972-8865-36-8

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

  • Publisher name

    In conjuction with ICINCO 2005.

  • Place of publication

    Barcelona

  • Event location

    Barcelona

  • Event date

    Sep 13, 2005

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article