On Fredholm's Theorem of the Alternative and a Corollary of Rohn's Residual Existence Theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA130163Y" target="_blank" >RIV/61988987:17310/12:A130163Y - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Fredholm's Theorem of the Alternative and a Corollary of Rohn's Residual Existence Theorem
Original language description
By Fredholm's Theorem of the alternative, the system ${mib A} {mib x} = {mib b}$ of linear equations has no solution if and only if ${mib u}^{sl T} ! {mib A} = {mib o}^{sl T}$ and ${mib u}^{sl T} {mib b} neq 0$ for some ${mib u} in {msbmR}^m$. Recently, Rohn proved as a corollary of the Residual Existence Theorem for linear equations [{it Optim. Lett./} 4 (2010), 287--292] that the system ${mib A} {mib x} = {mib b}$ has a solution if and only if the residual set ${, {mib A} {mib x} - {mib b} : {mib x} in {msbm R}^n ,}$ intersects all the orthants of~${msbm R}^m$. We study the relation between both the results in the more general setting of a vector space over a linearly ordered (possibly skew) field, obtain a new proof of the corollary, and give a generalisation of Fredholm's Theorem of the alternative.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Pannonica
ISSN
0865-2090
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
10
Pages from-to
311-320
UT code for WoS article
—
EID of the result in the Scopus database
—