All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Residual Existence Theorem for Linear Equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00332762" target="_blank" >RIV/67985807:_____/10:00332762 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Residual Existence Theorem for Linear Equations

  • Original language description

    A residual existence theorem for linear equations is proved: if $AinRmn$, $binRm$ and if $X$ is a finite subset of $Rn$ satisfying $max_{xin X}p^T(Ax-b)geq 0$ for each $pinRm$, then the system of linear equations $Ax=b$ has a solution in the convex hull of $X$. An application of this result to unique solvability of the absolute value equation $Ax+B|x|=b$ is given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Optimization Letters

  • ISSN

    1862-4472

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    4

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database