A Residual Existence Theorem for Linear Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00332762" target="_blank" >RIV/67985807:_____/10:00332762 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Residual Existence Theorem for Linear Equations
Original language description
A residual existence theorem for linear equations is proved: if $AinRmn$, $binRm$ and if $X$ is a finite subset of $Rn$ satisfying $max_{xin X}p^T(Ax-b)geq 0$ for each $pinRm$, then the system of linear equations $Ax=b$ has a solution in the convex hull of $X$. An application of this result to unique solvability of the absolute value equation $Ax+B|x|=b$ is given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization Letters
ISSN
1862-4472
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
4
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—