All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Distribution functions of ratio sequences, III

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F13%3AA14018WQ" target="_blank" >RIV/61988987:17310/13:A14018WQ - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Distribution functions of ratio sequences, III

  • Original language description

    In this paper we study the distribution functions g(x) of the sequence of blocks X-n = (x(1/)x(n), x(2)/x(n), ... , x(n)/x(n)), n = 1, 2, ... , where x(n) is an increasing sequence of positive integers. Assuming that the lower asymptotic density (sic) ofx(n), is positive, we find the optimal lower and upper bounds of g(x). As an application, we also get the,optimal bounds of limit points 1/n Sigma(n)(i=1) x(1)/x(n), n = 1, 2, ...

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PUBL MATH-DEBRECEN

  • ISSN

    0033-3883

  • e-ISSN

  • Volume of the periodical

    82

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    19

  • Pages from-to

    511-529

  • UT code for WoS article

    000320344200001

  • EID of the result in the Scopus database