Lower bounds for the error of quadrature formulas for Hilbert spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353189" target="_blank" >RIV/68407700:21340/21:00353189 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jco.2020.101544" target="_blank" >https://doi.org/10.1016/j.jco.2020.101544</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jco.2020.101544" target="_blank" >10.1016/j.jco.2020.101544</a>
Alternative languages
Result language
angličtina
Original language name
Lower bounds for the error of quadrature formulas for Hilbert spaces
Original language description
We prove lower bounds for the worst case error of quadrature formulas that use given sample points X-n = {x(1), ..., x(n)}. We are mainly interested in optimal point sets X-n, but also prove lower bounds that hold with high probability for sets of independently and uniformly distributed points. As a tool, we use a recent result (and extensions thereof) of Vybiral on the positive semi-definiteness of certain matrices related to the product theorem of Schur. The new technique also works for spaces of analytic functions where known methods based on decomposable kernels cannot be applied. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/8X20043" target="_blank" >8X20043: Time-Frequency Representations for Function Spaces (TIFREFUS)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Complexity
ISSN
0885-064X
e-ISSN
1090-2708
Volume of the periodical
65
Issue of the periodical within the volume
101544
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
—
UT code for WoS article
000655417700005
EID of the result in the Scopus database
—