Distribution functions for subsequences of the Van der Corput sequence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F13%3AA14019QS" target="_blank" >RIV/61988987:17310/13:A14019QS - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Distribution functions for subsequences of the Van der Corput sequence
Original language description
For an integer b>1 let (phi (b(n)) denote the Van der Corput sequence base b in [0,1). Answering a question of O. Strauch, C. Aisleitner and M. Hofer showed that the distribution function of (phi(b(n)),phi(b(n+1))... on [0,1) exists and is a copula. In this note we show that this phenomenon extends to a broad class of subsequences of the van der Corput sequences.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INDAGAT MATH NEW SER
ISSN
0019-3577
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
593-601
UT code for WoS article
—
EID of the result in the Scopus database
—