All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uniform distribution of the weighted sum-of-digits functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00546811" target="_blank" >RIV/67985807:_____/21:00546811 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.2478/udt-2021%E2%80%930005" target="_blank" >http://dx.doi.org/10.2478/udt-2021%E2%80%930005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/udt-2021-0005" target="_blank" >10.2478/udt-2021-0005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uniform distribution of the weighted sum-of-digits functions

  • Original language description

    The higher-dimensional generalization of the weighted q-adic sum-of-digits functions s_{q,γ}(n), n = 0, 1, 2,... , covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x) = x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function s_{q,γ}(n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h_1*s_{q,γ}(n) + h_2*s_{q,γ}(n + 1), where h_1 and h_2 are integers such that h1 + h2 does not vanish and that the akin two-dimensional sequence (s_{q,γ}(n), s_{q,γ}(n + 1)) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence (s_{q,γ}(n), s_{q,γ}(n + 1)) , n = 0, 1, 2,... , will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Uniform Distribution Theory

  • ISSN

    1336-913X

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    34

  • Pages from-to

    93-126

  • UT code for WoS article

  • EID of the result in the Scopus database