Uniform distribution of the weighted sum-of-digits functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00546811" target="_blank" >RIV/67985807:_____/21:00546811 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2478/udt-2021%E2%80%930005" target="_blank" >http://dx.doi.org/10.2478/udt-2021%E2%80%930005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/udt-2021-0005" target="_blank" >10.2478/udt-2021-0005</a>
Alternative languages
Result language
angličtina
Original language name
Uniform distribution of the weighted sum-of-digits functions
Original language description
The higher-dimensional generalization of the weighted q-adic sum-of-digits functions s_{q,γ}(n), n = 0, 1, 2,... , covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x) = x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function s_{q,γ}(n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h_1*s_{q,γ}(n) + h_2*s_{q,γ}(n + 1), where h_1 and h_2 are integers such that h1 + h2 does not vanish and that the akin two-dimensional sequence (s_{q,γ}(n), s_{q,γ}(n + 1)) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence (s_{q,γ}(n), s_{q,γ}(n + 1)) , n = 0, 1, 2,... , will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Uniform Distribution Theory
ISSN
1336-913X
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
SK - SLOVAKIA
Number of pages
34
Pages from-to
93-126
UT code for WoS article
—
EID of the result in the Scopus database
—