Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501DRY" target="_blank" >RIV/61988987:17310/14:A1501DRY - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality
Original language description
In this paper, we introduce upper and lower Studniarski derivatives of set-valued maps. By virtue of these derivatives, higher-order necessary and sufficient optimality conditions are obtained for several kinds of minimizers of set-valued optimization problem. Then, applications to duality are given. Some remarks on several existent results and examples are provided to illustrate our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
POSITIVITY
ISSN
1385-1292
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
449-473
UT code for WoS article
—
EID of the result in the Scopus database
—