On Polynomials Whose Roots Have Rational Quotient of Differences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801R6P" target="_blank" >RIV/61988987:17310/17:A1801R6P - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0004972717000508" target="_blank" >http://dx.doi.org/10.1017/S0004972717000508</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0004972717000508" target="_blank" >10.1017/S0004972717000508</a>
Alternative languages
Result language
angličtina
Original language name
On Polynomials Whose Roots Have Rational Quotient of Differences
Original language description
We classify all polynomials P(X) is an element of Q[X] with rational coefficients having the property that the quotient (lambda(i) - lambda(j)) / (lambda(k) - lambda(l)) is a rational number for all quadruples of roots (lambda i, lambda(j),lambda(k),lambda(l)) with lambda(k), not equal lambda(l).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
B AUST MATH SOC
ISSN
0004-9727
e-ISSN
1755-1633
Volume of the periodical
96
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
185-190
UT code for WoS article
000411403100002
EID of the result in the Scopus database
2-s2.0-85021842420