All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topological MI-groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901UHB" target="_blank" >RIV/61988987:17310/18:A1901UHB - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topological MI-groups

  • Original language description

    This contribution deals with the generalization of groups and topological groups. The MI-group (many identities group) structure, which naturally generalizes the group structure, is enriched by a topology and the respective binary operation and inversion are continuous. The aim of this contribution is to introduce the term of topological MI-group, introduce the basic properties and demonstrate them on examples. To be able to study topological MI-groups, first, we need to introduce MI-groups as a generalization of groups. There are defined terms of a product of MI-groups and quotient MI-subgroups. The main part of this contribution shows a basic definition of topological MI-groups and this concept is demonstrated on examples. There is also shown the existence of product and quotient topological MI-groups.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics

  • ISBN

    9788074641121

  • ISSN

  • e-ISSN

  • Number of pages

    1

  • Pages from-to

    33-33

  • Publisher name

    University of Ostrava

  • Place of publication

    Ostrava

  • Event location

    Malenovice

  • Event date

    May 10, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article