Topological MI-groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901UHB" target="_blank" >RIV/61988987:17310/18:A1901UHB - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Topological MI-groups
Original language description
This contribution deals with the generalization of groups and topological groups. The MI-group (many identities group) structure, which naturally generalizes the group structure, is enriched by a topology and the respective binary operation and inversion are continuous. The aim of this contribution is to introduce the term of topological MI-group, introduce the basic properties and demonstrate them on examples. To be able to study topological MI-groups, first, we need to introduce MI-groups as a generalization of groups. There are defined terms of a product of MI-groups and quotient MI-subgroups. The main part of this contribution shows a basic definition of topological MI-groups and this concept is demonstrated on examples. There is also shown the existence of product and quotient topological MI-groups.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics
ISBN
9788074641121
ISSN
—
e-ISSN
—
Number of pages
1
Pages from-to
33-33
Publisher name
University of Ostrava
Place of publication
Ostrava
Event location
Malenovice
Event date
May 10, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—