All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Romanov type problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901XZM" target="_blank" >RIV/61988987:17310/18:A1901XZM - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11139-017-9972-8" target="_blank" >http://dx.doi.org/10.1007/s11139-017-9972-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11139-017-9972-8" target="_blank" >10.1007/s11139-017-9972-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Romanov type problems

  • Original language description

    Romanov proved that the proportion of positive integers which can be represented as a sum of a prime and a power of 2 is positive. We establish similar results for integers of the form n = p + 2(2k) + m! and n = p + 2(2k) + 2(q) where m, k is an element of N and p, q are primes. In the opposite direction, Erdos constructed a full arithmetic progression of odd integers none of which is the sum of a prime and a power of two. While we also exhibit in both cases full arithmetic progressions which do not contain any integers of the two forms, respectively, we prove amuch better result for the proportion of integers not of these forms: (1) The proportion of positive integers not of the form p + 2(2k) + m! is larger than 3/4. (2) The proportion of positive integers not of the form p + 2(2k) + 2(q) is at least 2/3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RAMANUJAN J

  • ISSN

    1382-4090

  • e-ISSN

    1572-9303

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    23

  • Pages from-to

    267-289

  • UT code for WoS article

    000447277000003

  • EID of the result in the Scopus database

    2-s2.0-85041521307