Romanov type problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901XZM" target="_blank" >RIV/61988987:17310/18:A1901XZM - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11139-017-9972-8" target="_blank" >http://dx.doi.org/10.1007/s11139-017-9972-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11139-017-9972-8" target="_blank" >10.1007/s11139-017-9972-8</a>
Alternative languages
Result language
angličtina
Original language name
Romanov type problems
Original language description
Romanov proved that the proportion of positive integers which can be represented as a sum of a prime and a power of 2 is positive. We establish similar results for integers of the form n = p + 2(2k) + m! and n = p + 2(2k) + 2(q) where m, k is an element of N and p, q are primes. In the opposite direction, Erdos constructed a full arithmetic progression of odd integers none of which is the sum of a prime and a power of two. While we also exhibit in both cases full arithmetic progressions which do not contain any integers of the two forms, respectively, we prove amuch better result for the proportion of integers not of these forms: (1) The proportion of positive integers not of the form p + 2(2k) + m! is larger than 3/4. (2) The proportion of positive integers not of the form p + 2(2k) + 2(q) is at least 2/3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RAMANUJAN J
ISSN
1382-4090
e-ISSN
1572-9303
Volume of the periodical
47
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
267-289
UT code for WoS article
000447277000003
EID of the result in the Scopus database
2-s2.0-85041521307