On the Diophantine Equation p^a + q^b=z^2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50005183" target="_blank" >RIV/62690094:18470/16:50005183 - isvavai.cz</a>
Result on the web
<a href="http://www.ijpam.eu/contents/2016-110-1/9/9.pdf" target="_blank" >http://www.ijpam.eu/contents/2016-110-1/9/9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12732/ijpam.v110i1.9" target="_blank" >10.12732/ijpam.v110i1.9</a>
Alternative languages
Result language
angličtina
Original language name
On the Diophantine Equation p^a + q^b=z^2
Original language description
Recently, many papers have been devoted to the study of the Diophantine equation a^x + b^y = z^2, where x, y are are positive integers and a, b, z are some non-negative integers.In this paper we shall prove that the Diophantine equation p^a+q^b=z^2 has only finitely many computable solutions in positive integers $a,b$ and $z$ with primes p equiv q equiv 3 mod 4 previously fixed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International journal of pure and applied mathematics
ISSN
1311-8080
e-ISSN
—
Volume of the periodical
110
Issue of the periodical within the volume
1
Country of publishing house
BG - BULGARIA
Number of pages
5
Pages from-to
83-87
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84994779203