On x-coordinates of pell equations that are repdigits
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901Y18" target="_blank" >RIV/61988987:17310/18:A1901Y18 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On x-coordinates of pell equations that are repdigits
Original language description
Let b ? 2 be a given integer. In this paper, we show that there are only finitely many positive integers d that are not squares, such that the Pell equation X2 ? dY 2 = 1 has two positive integer solutions (X, Y) with the property that their X-coordinates are base b-repdigits. Recall that a base b-repdigit is a positive integer whose digits have the same value when written in base b. We also give an upper bound on the largest such d in terms of b.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FIBONACCI QUART
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
11
Pages from-to
52-62
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85043677191