On the diophantine equation pa + (p + 1)b = z2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50004086" target="_blank" >RIV/62690094:18470/15:50004086 - isvavai.cz</a>
Result on the web
<a href="http://www.ijpam.eu/contents/2015-105-4/index.html" target="_blank" >http://www.ijpam.eu/contents/2015-105-4/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12732/ijpam.v105i4.14" target="_blank" >10.12732/ijpam.v105i4.14</a>
Alternative languages
Result language
angličtina
Original language name
On the diophantine equation pa + (p + 1)b = z2
Original language description
Recently, many papers have been devoted to the study of the Diophantine equation $x^a + y^b = z^2$ where $x, y$ are are positive integers and $a,b,z$ are non-negative integers.In this paper, we shall prove some results related to the equation $p^a+(p+1)^b=z^2$. In particular, we shall prove that there is no solution when $p>3$, $bgeq 2$ and $z$ even.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International journal of pure and applied mathematics
ISSN
1311-8080
e-ISSN
—
Volume of the periodical
105
Issue of the periodical within the volume
4
Country of publishing house
BG - BULGARIA
Number of pages
5
Pages from-to
745-749
UT code for WoS article
—
EID of the result in the Scopus database
—