All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Diophantine equations involving Lucas sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015685" target="_blank" >RIV/62690094:18470/19:50015685 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0073/math-2019-0073.xml" target="_blank" >https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0073/math-2019-0073.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/math-2019-0073" target="_blank" >10.1515/math-2019-0073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Diophantine equations involving Lucas sequences

  • Original language description

    In this paper, we study the Diophantine equation $u_n=R(m)P(m)^{Q(m)}$,where $R, P$ and $Q$ are some polynomials (under weak assumptions) and $u_n$ is a Lucas sequence, thus the sequence $(u_n)_{ngeq 0}$ with characteristic polynomial $f(x) = x^2-ax-b$, i.e., $(u_n)_{ngeq 0}$ is the integral sequence satisfying $u_0=0, u_1=1$, and $u_n = au_{n-1} +bu_{n-2}$, for all integers $ngeq 2$. We suppose that this sequence is non degenerated.In this paper, we describe how a method based on $p$-adic valuations can be settled to this kind of equation. We found a upper bound for solutions of special case of this Diophantine equation in the form $F_n=km^m(m+1)$, where $k,m,n$ are any given positive integer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Open mathematics

  • ISSN

    2391-5455

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    AUGUST

  • Country of publishing house

    PL - POLAND

  • Number of pages

    5

  • Pages from-to

    942-946

  • UT code for WoS article

    000481478600006

  • EID of the result in the Scopus database

    2-s2.0-85070913801