There are no Diophantine quadruples of Fibonacci numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901Y0Y" target="_blank" >RIV/61988987:17310/18:A1901Y0Y - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/aa170613-8-12" target="_blank" >http://dx.doi.org/10.4064/aa170613-8-12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/aa170613-8-12" target="_blank" >10.4064/aa170613-8-12</a>
Alternative languages
Result language
angličtina
Original language name
There are no Diophantine quadruples of Fibonacci numbers
Original language description
We show that there is no Diophantine quadruple, that is, a set {a1,a2,a3,a4} of four positive integers such that aiaj+1 is a square for all 1≤i<j≤4, consisting of Fibonacci numbers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACTA ARITH
ISSN
0065-1036
e-ISSN
—
Volume of the periodical
185
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
20
Pages from-to
19-38
UT code for WoS article
000445088500003
EID of the result in the Scopus database
2-s2.0-85055206909