All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One-sided Diophantine approximations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2001XOZ" target="_blank" >RIV/61988987:17310/19:A2001XOZ - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/19:00501142

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1751-8121/aaf5d3" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/aaf5d3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8121/aaf5d3" target="_blank" >10.1088/1751-8121/aaf5d3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One-sided Diophantine approximations

  • Original language description

    The paper deals with best one--sided (lower or upper) Diophantine approximations of the $ell$-th kind ($ellinmathbb{N}$). We use the ordinary continued fraction expansions to formulate explicit criteria for a fraction $frac{p}{q}inmathbb{Q}$ to be a best lower or upper Diophantine approximation of the $ell$-th kind to a given $alphainmathbb{R}$. The sets of best lower and upper approximations are examined in terms of their cardinalities and metric properties. Applying our results in spectral analysis, we obtain an explanation for the rarity of so-called Bethe--Sommerfeld quantum graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J PHYS A-MATH THEOR

  • ISSN

    1751-8113

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    045205

  • UT code for WoS article

    000455380000004

  • EID of the result in the Scopus database

    2-s2.0-85061427032